Preparation of 3-Imino-2-en-1-ones from 2-Aralkylisoxazolium Salts

By Choji Kashima,* Yoshihiko Tsuda, Satoshi Imada, and Takehiko Nishio, Department of Chemistry, University of Tsukuba, Sakura-mura, Niiharigun, Ibaraki 305, Japan

Isoxazolium salts having an aralkyl group on the nitrogen atom, such as 2-benzhydryl- and 2-fluoren-9-ylisoxazolium salts, are decomposed by base to give the corresponding 3-imino-2-en-1-ones, while 2-methyl-3,5diphenylisoxazolium perchlorate gives 4,6-diphenyl-2*H*-1,3-oxazine. The chemical behaviour of these 3imino-2-en-1-ones and the mechanism of their formation are also discussed.

RECENTLY we reported the reactions of 3,5-disubstituted isoxazoles and isoxazolium salts.^{1,2} In these papers, we proposed 3-imino-2-en-1-ones as the intermediates in the reaction of 2-methylisoxazolium salts with sodium methoxide to give 3-(methoxymethyl)amino-2-en-1ones.³ Therefore, we wished to prepare the 3-imino-2en-1-ones and to investigate their chemical behaviour. In the literature, there are only two publications concerning 3-imino-2-en-1-ones (2). In one, Barluenga

and his co-workers reported ⁴ that the reaction products from acetophenone and nitriles in the presence of aluminium chloride were 3-substituted 3-(1-phenylethylideneamino)-1-phenylprop-2-en-1-ones. However, the structures of these compounds were later corrected to 4H-1,3-oxazines from their ¹³C n.m.r. spectra and their

chemical reactivity.^{5,6} In the other, Kohler and Blatt tentatively proposed the 3-methylideneamino-1,2,3-triphenylprop-2-en-1-one structure (2a) for the product of the reaction of the 2-methyl-3,4,5-triphenylisoxazo-lium salt (1a) with alkali.⁷ However, King and Durst revised the structure of this compound to 4,5,6-triphenyl-2*H*-1,3-oxazine (3a) on the basis of ¹H n.m.r. spectrum and chemical behaviour.⁸

RESULTS AND DISCUSSION

The structures (2a) and (3a) are tautomeric, so we wished to check in which form the product from com-

pound (1a) existed. In structure (2a), there is no sp^3 carbon, while (3a) has one sp^3 carbon. The ¹³C n.m.r. of the compound, which was prepared from (1a) according to Kohler's procedure (m.p. 141 °C), shows one sp^3 carbon signal at δ 79.6. From this fact, the structure was shown to be (3a) coinciding with King's structure. Similarly, 2-methyl-3,5-diphenylisoxazolium perchlorate (1b) was decomposed to 4,6-diphenyl-2*H*-1,3-oxazin-(3b) by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).

Since the benzylideneamino-group is more stable than the methylideneamino-group as a result of conjugation, the introduction of a phenyl group onto the iminocarbon was expected to increase the stability of the 3imino-2-en-1-ones (2) over their cyclic tautomers, the 2phenyl-2H-1,3-oxazines (3). Therefore, 2-benzhydryl-3,5-dimethylisoxazolium perchlorate (1c) was treated with DBU in ether. The product showed the different i.r. absorption pattern listed in Table 1. The sp^3 carbon signal could not be observed in the ¹³C n.m.r. spectrum. The product was hydrogenated to 4benzyhydrylaminopent-3-en-2-one (4c) over a platinum catalyst and was hydrolysed to pentane-2,4-dione (5). From these facts, this product was shown to be 4-(diphenylmethylideneamino)pent-3-en-2-one (2c). Treatment of (1c) with potassium methoxide instead of DBU also gave (2c).

For further confirmation of these structures, 2-bisp-tolylmethyl-3,5-dimethylisoxazolium perchlorate (1d) was treated with DBU to afford 4-(bis-p-tolylmethylideneamino)pent-3-en-2-one (2d). From the ¹H n.m.r. spectrum in the presence of an europium shift reagent, the acyclic structure with the Z-configuration (2d) was inferred. Similarly, 2-(1-phenylethyl)- (1e) and 2fluoren-9-yl-3,5-dimethylisoxazolium perchlorate (1f), 2-benzhydryl- (1g), 2-(1-phenylethyl)- (1h), and 2fluoren-9-yl-3-methyl-5-phenylisoxazoium perchlorate (1i) were decomposed by DBU or potassium methoxide to give the corresponding 3-amino-2-en-1-ones (2) in good yields. All these products were found to have the acyclic structure with a Z-configuration on the basis of their ¹H n.m.r., ¹³C n.m.r., and i.r. spectra, and elemental analyses, summarised in Tables 1 and 2. The fact that the R³ methyl signals appeared around δ 2.0 in the ¹H n.m.r. spectrum also supported the Z-configuration, because the C-5 methyl signals of (Z)-4-aminopent-3en-2-ones generally appear at $\delta 2.0.9$

These (Z)-3-imino-2-en-1-ones (2) equilibrated to a

			1	H N.m. r., i.	r. and u.v .	spectral data	
			8				
Compound	R^2	R1	Ř³	\mathbb{R}^4	R⁵	$\nu_{\rm max.}~({\rm cm}^{-1})$	$\lambda_{\rm max}/{\rm nm} \ (\log \epsilon)$
(3a)	6.8 - 7.7			5.	58	1 625, 1 570	239 (4.20), 338 (3.79)
(3 b)	6.63	7.2	-7.95	5.	66	1 625, 1 570	253 (4.03), 328 (3.54)
(2c)	5.30	2.04	1.88	7.1–	-7.4	$1 \ 665, \ 1 \ 635, \ 1 \ 575$	207 (4.30), 279 (4.03)
(2d)	5.21	2.02	1.79	7.13, 7.32	2.38	1 660, 1 640, 1 580	273 (4.17)
(2e)	5.18	1.91	1.86	7.1 - 7.7	1.95	1 660, 1 640, 1 575	213(4.58), 247(4.57), 316(4.62)
(2f)	5.47	2.20	2.05	7.0-	-7.85	1 660, 1 640, 1 595	206 (4.45), 247 (4.70), 255 (4.80),
- ,							270 (4.35), 291 (4.17), 300
							(4.20)
(2g)	5.97	2.08	7.15-7.	7, 7.7—8.0		1 650, 1 620, 1 585	209 (4.34), 323 (3.92)
(2h)	5.85	2.15	7.1—7.6	6, 7.6-8.0	1.97	1 665, 1 645, 1 590	206 (4.16), 223 (3.98), 326 (4.01)
(2i)	6.25	2.33	7.1—7.6	6, 7.6-8.0		1 670, 1 630, 1 595	
(7c)	5.39	1.97	2.23	7.1	—7.7		
(7f)	5.86	2.15	2.54	6.9-	-7.8	1 660, 1 645, 1 600	
(7g)	6.10	7.23	2.37		7.23		

TABLE 1

mixture of the isomers (2) and (7) by irradiation in benzene or methanol solution, as summarised in Table 3. Though we did not succeed in separating the isomeric mixture of (2) and (7), the spectral data of the photoisomers (7) are listed in Tables 1 and 2. The R³ methyl signals of (7) appear at ca. δ 2.4 in the ¹H n.m.r. spectra, while the C-5 methyl signals of (E)-4-aminopent-3-en-2-ones generally appear at $\delta 2.4.$ ⁹ In addition, no signals

a; $R^1 = R^2 = R^3 = Ph$, $R^4 = R^5 = H$. $X = FeCl_4$ b; $R^1 = R^3 = Ph$, $R^2 = R^4 = R^5 = H$, $X = ClO_4$ c; $R^1 = R^3 = Me$, $R^2 = H$, $R^4 = R^5 = Ph$, $X = ClO_4$ d; $R^1 = R^3 = Me$, $R^2 = H$, $R^4 = R^5 = C_6H_4Me-p$, $X = ClO_4$ e; $R^1 = R^3 = R^5 = Me$, $R^2 = H$, $R^4 = Ph$, $X = ClO_4$

due to a cyclic isomer could be observed in the ¹³C n.m.r. spectrum of (7). When the mixture of (2) and (7) was heated above 50 °C, the ratio of the mixture was changed without any other decomposition (Table 3). An attempt to confirm the structures (7) as (E)-3-imino-

TABLE 3

Photochemical and thermal isomerisation of (2)

					Product
		Temperature			ratio
Compound	Irradiation	(°C)	Solvent	Time/h	(2):(7)
(2c)	> 300 nm	25	CD_3OD	45	70:30
	> 300 nm	25	$C_6 D_6$	36	28:72
	Dark	60	C_6D_6	45	67:33
(2f)	> 300 nm	25	$C_6 D_6$	40	19:81
. ,	Dark	80	$C_6 D_6$	150	42:58
(2g)	> 3 00nm	25	CD ₃ OD	45	55:45
(0,	> 30 0nm	25	$C_{6}D_{6}$	45	33:67
	Dark	60	Č ₆ Ď ₆	90	75:25

2-en-1-ones by analysis of the europium-shifted ¹H n.m.r. spectra was unsuccessful.

In summary, 2-aralkylisoxazolium perchlorates give 3-imino-2-en-1-one compounds in good yield, while 2methylisoxazolium salts are decomposed to afford 2H-1,3-oxazine derivatives. Furthermore, the thermally stable structure of these 3-imino-2-en-1-ones is unexpectedly the Z-configuration and these Z-isomers are isomerised to the E-isomer by irradiation.

The mechanism of the formation of Z-3-imino-2-en-1ones (2) and 2H-1,3-oxazines (3) is assumed to be as follows. The first step is the deprotonation of the substituent group on the nitrogen atom of (1). The resulting ylide is then converted intramolecularly into (2). Finally, (2) is cyclised to (3) in the case of (1a) and (1b). Since diphenyldiazomethane generates diphenylcarbene intermediates in the reaction of 2,3,5-trimethylisoxazolium salts with sodium methoxide.

EXPERIMENTAL

Materials.—2-Methyl-3,5-diphenylisoxazolium perchlorate (1b) was prepared from the corresponding isoxazole by Adachi's procedure.¹⁰ 2-Benzhydryl- (1c), 2-(bis-*p*tolylmethyl)- (1d), 2-(1-phenylethyl)- (1e), and 2-fluoren-9yl-3,5-dimethylisoxazolium perchlorates (1f), and 2-benzhydryl- (1g), 2-(1-phenylethyl)- (1h), and 2-fluoren-9-yl-3methyl-5-phenylisoxazolium perchlorates (1i) were prepared from the corresponding isoxazoles according to Woodman's procedure.¹¹

2-Methyl-3,5-diphenylisoxazolium perchlorate (1b), yield 69%, m.p. 235–236 °C (decomp.); $\nu_{max.}$ (KBr) 1 605, 1 545, and 1 460 cm⁻¹; $\delta([{}^{2}H_{6}]DMSO)$ 4.49 (s, 3 H), 7.7–8.2 (m, 10 H), and 8.31 (s, 1 H) (Found: C, 57.2; H, 4.1; N, 4.3. C₁₆H₁₄ClNO₅ requires C, 57.23; H, 4.20; N, 4.17%).

2-Fluoren-9-yl-3,5-dimethylisoxazolium perchlorate (1f), yield 30%, m.p. 250–252 °C (decomp.); $\nu_{max.}$ (KBr) 1 590, 1 445, and 1 080 cm⁻¹ (Found: C, 59.45; H, 4.4; N, 3.95. C₁₈H₁₆ClNO₅ requires C, 59.75; H, 4.45; N, 3.87%).

2-Benzhydryl-3-methyl-5-phenylisoxazolium perchlorate (1g), yield 74%, m.p. 137—138 °C (decomp.); $v_{max.}$ (KBr) 1 610, 1 570, and 1 470 cm⁻¹; $\delta([^{2}H_{6}]DMSO)$ 2.29 (s, 3 H), 5.63 (s, 1 H), 6.80 (s, 1 H), and 6.9—7.9 (m, 15 H) (Found: C, 64.7; H, 4.75; N, 3.4. C₂₃H₂₀ClNO₅ requires C, 64.87; H, 4.73; N, 3.29%).

3-Methyl-5-phenyl-2-(1-phenylethyl)isoxazolium per-

	\sim N.m.r. spectral data of (2) and (3)									
					δ					
Compound	C-1	C-2	C-3	C-4	R1	R ³	Ar			
(3a)	166.7	115.7	159.4	79.6			138.0, 135.3, 133.0, 131.5, 129.3, 128.8, 128.5, 128.4, 128.0, 127.8, 127.5, 126.9			
(3b)	163.5	95.7	162.7	80.9			136.9, 132.1, 130.9, 130.5, 128.6, 128.5, 126.6, 126.0			
(2c)	*	106.8	160.4	139.2	27.3	23.5	129.2, 128.4, 128.2, 128.1, 127.9, 127.8			
(2ď)	197.6	109.6	160.5	141.3	31.9	23.5	140.4, 139.7, 136.9, 134.3, 130.1, 128.8, 128.2, 126.4, 21.4			
(2f) (2g)	196.5 *	$\begin{array}{c} 109.3\\99.7\end{array}$	$\begin{array}{c} 160.0\\ 162.3\end{array}$	142.4 141.7	30.5	$\begin{array}{c} 22.9 \\ 24.3 \end{array}$	134.0, 132.4, 128.4, 124.8, 120.2 130.9, 128.3, 128.2, 128.0, 127.9, 127.1, 126.3			

TABLE 2 ¹³C N.m.r. spectral data of (2) and (3)

* Undetectable.

at high temperatures, 3,5-dimethylisoxazole was treated with diphenyldiazomethane at 80 °C. The product was identical with (2c), and therefore, the formation of an ylide as the intermediate was proved.

In addition, compound (2c) was treated with methanol in the presence of potassium methoxide to afford the methanol adduct, 4-{[diphenyl(methoxy)methyl]amino}pent-3-en-2-one (6c). This fact supports the previous assumption ³ of 2-(3,5-dimethylisoxazolium)methylide and 4-methylideneaminopent-3-en-2-one as the chlorate (1h), yield 79%, m.p. 132–134 °C (decomp.); $\nu_{max.}$ (KBr) 3 032, 1 610, 1 578, and 1 479 cm⁻¹; $\delta([^{2}H_{6}]DMSO)$ 2.05 (d, 3 H), 2.35 (s, 3 H), 6.41 (q, 1 H), and 7.3–8.1 (m, 11 H) (Found: C, 59.5; H, 5.0; N, 3.85. C₁₈H₁₈ClNO₅ requires C, 59.43; H, 4.99; N, 3.85%).

2-Fluoren-9-yl-3-methyl-5-phenylisoxacolium perchlorate (1i), yield 50%, m.p. 156—157 °C (decomp.); ν_{max} (KBr) 1 605, 1 570, 1 470, and 1 460 cm⁻¹ (Found: C, 65.25; H, 4.25; N, 3.35. C₂₃H₁₈ClNO₅ requires C, 65.17; H, 4.28; N, 3.30%).

General Decomposition of (1).-DBU (1 mmol) was added

dropwise to a solution of (1) (1 mmol) in anhydrous ether or dioxan (15 ml). After stirring overnight at room temperature, water was added, the product was extracted with dichloromethane, and the organic layer was dried over anhydrous magnesium sulphate and concentrated. The residue was chromatographed on silica gel eluting with benzene-ethyl acetate. The yellow fraction was recrystallised from hexane. When potassium methoxide was used as the base, the decomposition reaction was carried out in methanol. The elemental analyses and spectral data are summarised in Tables 1, 2, and 4.

Hydrolysis of (2c).-A solution of (2c) (1 mmol) in

mg) in dry benzene (25 ml) was refluxed for 12 h, and the mixture was poured into aqueous sodium hydroxide and extracted with benzene and dichloromethane. The combined organic layers were washed with water, dried over anhydrous magnesium sulphate, solvent evaporated off, and the residue chromatographed on silica gel eluting with benzene-ethyl acetate. The product was identical with (2c) by ¹H n.m.r. spectral and chromatographic comparison, yield 9%.

Europium-induced Shift Configurational Analysis of (2d).—The ¹H n.m.r. spectrum of a CDCl₃ solution of (2d) (35.64 mg) was measured in the presence of $\text{Eu}(\text{dpm})_{3}$,

TABLE 4

Elemental analytical and physical data

		Yield (%) 63	M.p. (°C) [B.p. (°C)/mmHg] 68—69.5	Analysis (%)					
Compound (3b)				Found			Calc.		
	Base DBU			с 81.65	H 5.45	N 5.95	С 81.67	H 5.56	N 5.95
(2c)	DBU KOMe	87 87	97.5-99.5	82.25	6.6	5.3	82.10	6.51	5.32
(2d)	KOMe	89	[178183/5]	82.1	7.15	4.35	82.43	7.26	4.80
(2e)	KOMe	83	[111—115/3]	77.45	7.60	6.95	77.57	7.60	6.95
(2f)	DBU	75	8788	83.1	5.8	5.4	82.73	5.78	5.36
(2g)	KOMe	41	85 - 85.5	84.8	5.95	4.3	84.89	5.88	4.31
(2h)	KOMe	73	80.5 - 81.5	82.75	6.5	5.35	82.10	6.51	5.32
(2i)	DBU	46	131 - 132.5	85.6	5.35	4.3	85.42	5.29	4.33

methanol (10 ml) was treated with dilute hydrochloric acid at room temperature for 12 h. The mixture was extracted with dichloromethane and the organic layer was dried over anhydrous magnesium sulphate. The residue was identical with authentic pentane-2,4-dione (5) by chromatographic and ¹H n.m.r. spectral comparison.

Hydrogenation of (2).—An ethanolic solution (15 ml) of (2) (1 mmol) was hydrogenated in the presence of platinum oxide. After absorption of hydrogen was complete, the catalyst was filtered off, and the residue recrystallised from hexane.

4-Benzhydrylaminopent-3-en-2-one (4c), yield 95%, m.p. 135-137 °C; $\delta(CDCl_3)$ 1.88 (s, 3 H), 2.03 (s, 3 H), 5.02 (s, 1 H), 5.70 (d, 1 H), 7.26 (s, 10 H), and 11.7 (br s, 1 H) (Found: C, 81.35; H, 7.25; N, 5.2. C₁₈H₁₉NO requires C, 81.47; H, 7.22; N, 5.28%).

4-(1-Phenylethylamino)pent-3-en-2-one (4e), yield 32%, m.p. 70—71 °C; ν_{max} (KBr) 3 025, 1 605, 1 490, and 1 430 cm⁻¹; δ(CDCl₃) 1.40 (d, 3 H), 1.65 (s, 3 H), 1.91 (s, 3 H), 4.42-4.88 (m, 1 H), 4.96 (s, 1 H), 7.26 (s, 5 H), and 11.2 (br s, 1 H) (Found: C, 76.8; H, 8.4; N, 6.8. C₁₃H₁₅NO requires C, 76.81; H, 8.43; N, 6.80%).

Addition of Methanol to (2c).-A methanol (20 ml) solution of (2c) (0.5 mmol) was treated with potassium methoxide (1.5 mmol) for several hours under reflux. After extraction with dichloromethane, the crude product was purified by flash chromatography ¹² on silica gel, eluting with hexane-ethyl acetate to give 4-{[methoxy(diphenyl]methyl]amino}pent-3-en-2-one (6c), yield 98%, b.p. 80-83 °C at 10⁻³ mmHg; $\nu_{max.}$ (liquid) 1 600, 1 490, 1 430, 740, and 700 cm⁻¹; δ (CDCl₃) 1.12 (s, 3 H), 2.08 (s, 3 H), 3.14 (s, 3 H), 5.13 (s, 1 H), and 7.0-7.7 (m, 10 H) (Found: C, 77.0; H, 6.9; N, 4.7. C₁₉H₂₁NO₂ requires C, 77.25; H, 7.16; N 4.74%).

Reaction of Diphenyldiazomethane with 3,5-Dimethylisoxazole.--A mixture of 3,5-dimethylisoxazole (5.6 mmol), diphenyldiazomethane (4.7 mmol), and cuprous iodide (33 and the molar induced shift values are summarised in Table 5.

Photochemical and Thermal Isomerisation of (2).--A $[{}^{2}H_{a}]$ benzene or $[{}^{2}H_{a}]$ methanol solution of (2) (50 mg in 0.3 ml) was irradiated in a Pyrex n.m.r. tube by a highpressure mercury lamp, and the isomer ratio was measured

TABLE 5

Europium-induced molar shift values for (2d)

	*			•	,	
	R1	\mathbb{R}^2	\mathbb{R}^3	o-H	m-H	<i>p</i> -Me
δ	2.02	5.21	1.79	7.32	7.13	2.38
$\Delta\delta$	6.51	7.06	1.80	1.85	0.40	0.15

directly from the ¹H n.m.r. spectrum of the mixture. The mixture after photolysis was then heated in the dark, monitoring by ¹H n.m.r. spectroscopy. The results are summarised in Table 4.

[9/1074 Received, 10th July, 1979]

REFERENCES

- ¹ C. Kashima, Y. Yamamoto, and Y. Tsuda, Heterocycles, 1977, 6, 805.
- ² C. Kashima, K. Arai, S. Imada, and Y. Tsuda, Bull. Chem. Soc. Japan, 1978, **51**, 1844. ³ C. Kashima, N. Mukai, Y. Yamamoto, Y. Tsuda, and Y.

Omote, Heterocycles, 1977, 7, 241.

⁴ J. Barluenga, S. Fustero, V. Rubio, and V. Gotor, Synthesis, 1977, 780.

⁵ C. Kashima, S. Imada, and T. Nishio, Chem. Letters, 1978,

1391. ⁶ S. Auricchio, O. Vajna de Papa, and E. Vera, Synthesis, 1979, 116.

⁷ E. P. Kohler and A. H. Blatt, J. Amer. Chem. Soc., 1928, 50, 1217.

J. F. King and T. Durst, Canad. J. Chem., 1962, 40, 882.

⁹ C. Kashima and Y. Yamamoto, Bull. Chem. Soc. Japan, 1979,

52, 1735. ¹⁰ I. Adachi, K. Harada, M. Miyazaki, and H. Kano, Chem. Pharm. Bull. (Japan), 1974, 22, 61.

¹¹ D. J. Woodman, J. Org. Chem., 1968, 33, 2397.

12 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.